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Abstract

There are some of us who enjoy using our wits and number sense to calculate mathematical
quantities as they are encountered. This is surely baffling to the rest of the population, but there
it is. A good discriminator is this paper, which offers novel methods for manually or mentally
calculating the tangent, hyperbolic tangent, exponential and logarithmic functions to essentially
four significant digits. Depending on which population group you fall into, I suspect that further
enticement is either unnecessary or insufficient.

PURSUITS IN MATHEMATICS often produce elementary functions as solutions that need to be
evaluated. This paper offers a means for fast, convenient calculation of four of these functions.
The tangent function tan x , though difficult to approximate well, is encountered often enough

that a fast, accurate approximation can be very useful tool. The hyperbolic tangent tanh x is less
common, but the exponential function ex and the logarithmic function ln x appear quite often in
technical work. All of these functions can be evaluated by the same general method, so we will cover
each of them individually in this paper.

We make use here of the fact that the tangent, hyperbolic tangent, and exponential functions
have addition formulas tan(a+b) , tanh(a+b) , and ea+b that involve simple functions of the same
type. This property is useful because we can iteratively construct, say, tan x with combinations of
smaller, known values of tan a , tan b , and so forth. If the known values are simple fractions, the
addition formulas are greatly simplified. We carefully choose to memorize a very small number of
these that easily combine to span the required range of the functions to good accuracy. We can then
quickly approximate these functions to within a small error, at which point we make use of a final
small correction to obtain four-digit accuracy. The object is to create simple, fast algorithms with
reasonable accuracy that can be performed initially using pencil and paper, and with practice can be
performed mentally.

This paper begins with a short overview of methods of mental division, followed by sections
presenting approximation techniques for these functions based on simplified addition formulas.

∗My thanks to John McIntosh (http://www.urticator.net) for his feedback on initial drafts of this paper.
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A Word or Two about Division...

THERE ARE INSTANCES, as in the later sections of this paper, where we are called upon to divide
by, say, a four-digit value. We would like to perform these very quickly to our accuracy, and

eventually we want to do these mentally. Efficient methods of mental division are rarely covered in
books on mental math, but an aptitude for such things is critical for many algorithms. Let’s take a
minute to discuss the ways that we can approach these situations.

Our goal is to reduce the denominator to an integer of one or two digits at most, as short division
by numbers of this size are not too difficult. First, we convert the denominator to an integer by
shifting its decimal point and shifting the decimal point in the numerator by the same amount. For
example, 4.657/.07 = 465.7/7 = 66.53 to four digits. Then we look to simplify the fraction by
dividing the numerator and denominator by low common factors. For example, .2420/7.2 = 2.420/72
= .605/18 = .0336 to four digits. We could have twice divided through by 2, but the last two digits of
both numbers are divisible by 4, so the entire numbers are divisible by 4. The division by 18 can be
done directly (I would count up by 18’s here, so for 60 we have 18⇒36⇒54 gives 3 remainder 6,
then for 65 we know 54 again gives 3 remainder 11, then for 110 we double 54 to give 6 remainder
2, etc.), or we can divide .605 by 2, then by 9. Division by 2 is easiest if the number is split into even
number groups, so .605 is split into .(60)(50), so half of each even group gives .3025, and dividing
this by 9 yields .0336 as before. In other words, we can divide the denominator by a convenient
factor even when the numerator is not evenly divisible by it, e.g., 35/36 = 5.833/6 = .9722 .

We can also adjust the denominator a little bit to get it to a round number as long as we adjust
the numerator by the same percentage. If we are solving 247/119, we see that the numerator is about
twice the denominator, so if we adjust 119 up to 120, we need to adjust 247 by about 2, and we
arrive at 249/120 = 24.9/12 = 2.0750 compared to the actual value of 2.0756. . . . With experience,
we might notice that 247 is twice 119 plus about 10%, so we could add 2.1 to 247 to get a more
accurate 24.91/12 = 2.0758. If we have 91.5/353, we can adjust the denominator down to 350 and
double the fraction to have a single-digit division, so 91.5/353 = 90.75/350 = 181.5/700 = 1.815/7 =
.2593 , where we reasoned that decreasing 353 by 3 was roughly equal to decreasing 91.5 by 3/4 .
Our answer will be a bit high, since 91.5 is a bit more than 1/4 of 353, so we might subtract a tiny bit
from our answer (which is in fact in excess by .0001). This shifting technique may not seem like
much, but as a graduate teaching assistant I impressed more than one physics class by using it to
mentally calculate answers to problems.

Finally, we can generalize an approximation that is valid for small b: 1
1+b ≈ 1−b :

a
c+b

≈ a
c

(
1− b

c

)
(1)

a
c−b

≈ a
c

(
1+

b
c

)
(2)

The error here is about .01 of a/c when b/c is 1/10, and about .0001 of a/c when b/c is 1/100 , low
for both approximations.

This is a nice alternative to shifting the denominator when the numerator is not a simple multiple
or fraction of the denominator. For example, 27/61≈ (27/60)(1 - 1/60) . Here we can find 27/60 =
2.7/6 = .4500 , then subtract .4500/60 = .0450/6 = .0075 to get .4425 compared to the actual value of
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.4426 . Since 1/60 is 1/6 of 1/10 and the error follows a square law, we are low by about (.45/36)(.01),
or .0001 , but this is for better calculators than me.

In short, long division should not be as intimidating as it might seem, particularly since we have
flexibility in our accuracy. If the problem is difficult to rearrange, we settle for less accuracy; if it
can be easily manipulated, we take what we are offered.

Earlier Methods of Approximation

MY BOOK, Dead Reckoning: Calculating Without Instruments,1 derives methods for calculating
the first quadrant value of tand directly (that is, not as a ratio of the sine and cosine functions).

These algorithms involve angles in units of degrees, as this occurs most commonly—a convenient
conversion factor from radians to degrees is 401/7, and of course the reciprocal of this converts degrees
to radians.

These methods assume that tana has been memorized for a = 0°, 10°, 20°, 30°, 40°, and 45°.
The tangent algorithms cover the range 0–45°, while the range 45–90° (in which the tangent function
careens to infinity) is first converted to the lower range through the identity tan d = 1/ tan(90°−d) .
Increasing the ±.0005 (three-digit) accuracy provided would require memorizing additional values
of tana , so it is desirable to find other methods of approximation that involve easier computation,
greater accuracy, and few memorized values. To this end, this paper treats first the function tan x in
the first quadrant, followed by the hyperbolic function tanh x (which is not treated in the book).

Methods for the exponential function and its inverse, the logarithmic function, are also given in
the book. A more comprehensive summary of the exponential method can be found on my website.2

In addition, there is an attractive alternative for computing exponentials (the McIntosh-Doerfler
algorithm) that involves minimal memorization.3 Both methods provide roughly five-digit accuracy,
but they require some effort. Here we are looking for methods that are faster and easier while offering
only about four-digit accuracy. The exponential function ex and the logarithmic function ln x can
benefit from the technique for the hyperbolic tangent function, so they are treated in the last sections
of this paper.

Calculating the Tangent Function

TANgent function characteristics can be leveraged to limit the range over which the calculations
need to be accurate. Below is a plot of tan x for x in radians. The function is linear with x

around the origin and approaches ±∞ as x approaches ±π/2 , or ±90°. The plot here is truncated at
x =±π/4 =±.7854 or ±45°, where tan x =±1 . For our purposes, it is important to note that

• tan(−x) =− tan x for all x

• tan x = x is valid to at least four decimal places when |x| ≤ 3.0° (or .053 radians)
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The addition formula for the tangent function is given by:

tan(a+b) =
tana+ tanb

1− tan a · tanb
(3)

Since tan(−x) =− tan x , the signs flip in the numerator and denominator when subtracting b.
The sign in the numerator always matches the sign in the left half of the equation.

Now if tana = N1/D1 and tanb = N2/D2 , the addition formula simplifies to

tan(a+b) =
N1D2 +N2D1

D1D2−N1N2
(4)

A convenient mental picture of Equation (4) is given in the diagram below, representing the
numerator as the sum of the N–D cross-products and the denominator as the negative N product plus
the D product.

In the same way as for Equation (3), we flip the signs in the numerator and denominator of
Equation (4) to subtract b.

Finally, for very small b in radians, we can derive a correction c that we add to tan a to find
tan(a+b):

tan(a+b) =
tan a+b

1−b tan a
≈ (tan a+b)(1+b tan a)

≈ tan a+b(1+ tan2 a)

or,

c = b(1+ tan2 a) (5)
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where we limit the calculation to our four-digit accuracy. We will use this correction when b is within
±.28° (or ±.005) of tana , as it is valid to four decimal places for even our maximum tan a of 1.

Consider the following table of some angles whose tangents are very simple fractions:

a (degrees) a (radians) tan a

26.57 .4636 1/2

18.43 .3218 1/3

14.04 .2450 1/4

11.31 .1974 1/5

Table 1. Angles with Simple Tangents.

There are 20 possible singles or pairs of these four angles, including pairings with themselves, and
there is at least one angle or one sum or difference of a pair of angles that lies within 2.2° of any angle
from 0–45° (or 0–.7854). In fact, comparing the two-sided 4.4° spacing with an average spacing
of 45/19 = 2.37 over this range, the selections are remarkably uniform in their coverage. The figure
below shows the possible values. Here the numbers at the bends in the top half represent the addition
of the degrees at the endpoints, the numbers in the bottom half represent differences, and the vertical
arrows represent an addition of an angle to itself. The results are shown simply to demonstrate the
distribution; there is no need to memorize the pairings.

The first step of our strategy of approximating tan x , then, is to identify the angle or pairwise
combination of angles that provide a value x0 that is nearest x. For a single angle, our first rough
estimate is the corresponding fraction; for a pair, we use Equation (4) to add or subtract the
corresponding fractions. If (x−x0) exceeds ±.28° (or ±.005), we choose a fraction x1 that is simple
but approximates (x−x0) in radians. Since (x−x0) is within the linear region of the tangent function,
tan x1 = x1 to our accuracy. Therefore, we add this new fraction using Equation (4), yielding a much
better approximation. Equation (5) can be used to create a final small correction, where tan a is
the current approximation and b = (x− x0− x1) . Our final answer will be accurate to nearly four
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decimal places, with the error in the last digit due to rounding operations on the fifth decimal place.
Of course, we can stop at any intermediate point for an answer of less accuracy.

There are two other matters that need to be addressed before we arrive at the final algorithm.
The first of these is handling tan x when x > 45° . The second is the conversion to radians if needed,
which can be simplified by carefully choosing the final fraction.

The detailed steps for approximating tan x are:

1. If x > 45° (or .7854), replace x with (90°− x) or (1.571− x).
2. Find the closest angle or the sum or difference of a pair of angles in Table 1 that

equal an angle x0 nearest to x. If a pair is chosen, use Equation (4) to add or subtract
their fractions; otherwise the single angle fraction is our first approximation. If
(x− x0) lies within ±.28° (or .005), skip to Step 4—believe it or not, this will
occur almost 25% of the time.

3. Find a simple fraction x1 roughly equal to the remaining difference (x− x0). If we
are working in degrees, convert x1 to radians. We normally do this by multiplying
by 7/401 , but the less accurate 7/400 is sufficient for our purposes here. (In this case,
it is best to find an x1 that has 4 in the numerator or 7 in the denominator so that
cancellation can occur during conversion.) Then use Equation (4) to add x1 in
radians to the result of Step 2.

4. Flip the resulting fraction from Step 3 if x was replaced in Step 1. Perform the
division to obtain a value to four decimal places.

5. For greater accuracy, convert the remaining angle difference b = (x− x0− x1) to
radians if we have been working in degrees. Then calculate c = b(1+ tan2 a) to
the fourth decimal place (involving two significant digits at most), where tana is
our current estimate. If x was not replaced in Step 1, add c to our current estimate
to arrive at the final approximation. If x was replaced in Step 1, subtract c instead.

Let’s demonstrate this with some examples.

Example: Find tan 28° .
We choose 14.04°+14.04° = 28.08° . From Equation (4),

tan 28.08° =
1(4)+1(4)
4(4)−1(1)

=
8

15

so 8/15 is our first estimate.
The difference of −.08° is well within the ±.28° for which Equation (5) is valid, so
we skip Step 3 and proceed to the final correction of Step 4. We divide 8/15 to get
.5333 (whose square is about .25) and find b =−.08× 7/400 =−.0014 .

c =−.0014(1+ .25) =−.0018
tan 28°≈ .5333− .0018 = .5315

which is .0002 off from the actual value of .5317 .
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If we had converted 28° to radians at the start of this last example, or if the original problem
were given in radians, we would not have had to multiply b by 7/400 . In any event, this example did
not demonstrate the entire algorithm because we skipped the final fraction. Let’s choose a value that
lies right between two numbers in the 20 combinations of memorized angles.

Example: Find tan .1633 .
We choose .4636− .3218 = .1418 , equivalent to our addition of 1/2 and −1/3 . Here
we are subtracting N2/D2 = 1/3 , so we simply flip the signs in Equation (4):

tan .1418 =
1(3)− (1)(2)
2(3)+(1)(1)

=
1
7

The angle difference of .0215 lies well outside the ±.28° range, so we proceed to
Step 3 and find a simple fraction that approximately equals it, say 1/50 = .0200 .

1(50)+1(7)
7(50)−1(1)

=
57

349

We need to find a decimal value for this. If we increase 349 by 1 to 350, we
need to increase the numerator, which is roughly 1/6 of the denominator, by the
same percentage, or by .17 instead of 1. So we instead do the division 57.17/350 =
114.34/700 = 1.1434/7 = .1633 . (Here we find our estimate equals the original radian
angle, but we know it must be a little higher because we are outside the linear
region).
For the greatest accuracy, we add the quantity .0015(1+ .03) , where .0015 is the
final angle difference and .03 is a one-digit approximation of the square of our
current estimate .1633 .

c = .0015(1+ .03) = .0015
tan .1633°≈ .1633+ .0015 = .1648

which equals the actual value of .1648 to four decimal places.

Example: Find tan 23.9° .
Again, this angle is not a fortuitous one. We can form something close to 23.9 by
adding 14.04 and 11.31, or by doubling 11.31 . Choosing the first pair, we arrive at
the first estimate:

tan 25.35° =
1(5)+1(4)
4(5)−1(1)

=
9

19

The angle difference −1.45° lies well outside the ±.28° range, so we find a simple
fraction that approximately equals it and has 4 in the numerator or 7 in the denomi-
nator, say 10/7 = 1.43 . We convert 10/7 to radians by multiplying by 7/400 , canceling
the 7’s to get 1/40. We add this to the previous estimate:

9(40)−1(19)
19(40)+9(1)

=
341
769

We need to find a decimal value for this. Again, if we increase 769 by 1 to 770,
we need to increase the numerator, which is roughly half of the denominator,
by the same percentage, or by .5 instead of 1. So we instead do the division
341.5/770 = 34.15/77 = .4435.
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Now we still have a difference of −.02× 7/400 ≈−.0004 radians, so we make our
final correction for greatest accuracy. The square of .4435 is approximately .2 , so

c =−.0004(1+ .2) =−.0005
tan 23.9°≈ .4435− .0005 = .4430

which is .0001 off from the actual value of .4431. . . Again, this is about the most
difficult case we can encounter.

Example: Find tan 66.1° .
We replace tan 66.1° with tan 23.9° . We found in the previous example that
tan 23.9° ≈ 341/769, so we find the reciprocal 769/341 . Adjusting 341 down to 340
should adjust 769 down by about 2.3, so the fraction reduces to 76.67/34.0 or 2.2550 .
Subtracting the final correction c =−.0004(1+2.252) =−.0024 provides the final
estimate of 2.2550+ .0024 = 2.2574 , compared to the actual value of 2.2566. . . We
suffered a bit here because b =−.00035 , actually, and we had rounded it to -.0004.

It might seem that we can evaluate tangents above 45° by including tan45° = 1/1 and tan33.69° =
2/3 in Table 1. With these additions, it turns out that all angles between 0° and 81.7° are within 3°
of a single angle or the sum or difference of a pair of angles, except for a sliver between 74.6° and
75.7°. However, because of the simple relationships between the tangent values in the table, the new
values are duplicates of existing ones or 90° minus existing ones, providing no advantage in the end.

In short, we have an algorithm for tan x that

• requires memorization of simple fraction tangents of only four angles (in degrees
or radians or both),

• easily handles the case where 45° < x < 90° ,
• provides intermediate estimates when less accuracy is required,
• involves simple calculations with the exception of one multi-digit division for

greatest accuracy,
• and provides nearly four decimal place accuracy, which is an order of magnitude

better than the algorithm in my book.

Calculating the Hyperbolic Tangent Function

TANH X, the hyperbolic tangent function, appears as the solution of a common second-order
differential equation and can be defined in terms of real exponentials:

tanh x =
ex− e−x

ex + e−x

A plot of tanh x is given below. The function is linear with x around the origin and asymptotically
approaches −1 and 1 at the extremes of x . There are no units of degrees for this function. Again, it
is important for our purposes to note that
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• tanh(−x) =− tanh x for all x

• tanh x = x is valid to at least four decimal places when |x| ≤ .053

• |tanh x| = 1 to at least four decimal places when |x| ≥ 5.30 , so this is the maximum x we
require in our algorithm (which by coincidence makes the range an easily remembered one)
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The addition formula for the hyperbolic tangent function is similar to that for the tangent function,
but the signs agree in the numerator and denominator:

tanh(a+b) =
tanh a+ tanh b

1+ tanh a · tanh b
(6)

Since tanh(−x) = − tanh x , the signs in the numerator and denominator are negative when
subtracting b. The signs in the numerator and denominator always match the sign in the left half of
the equation.

For tanha = N1/D1 and tanhb = N2/D2 , the hyperbolic tangent addition formula simplifies to the
formula for the tangent function but with all signs agreeing with the sign in the left side of the
equation:

tanh(a+b) =
N1D2 +N2D1

D1D2 +N1N2
(7)

Also, for very small b, we can derive a correction c that we add to tanh a to find tanh(a+b):

tanh(a+b) =
tanh a+b

1+b tanh a
≈ (tanh a+b)(1−b tanh a)

≈ tanh a+b(1− tanh2 a)

or,

c = b(1− tanh2 a) (8)

where again we limit the calculation to our four-digit accuracy. Note the sign change in the last term
compared to the corresponding approximation for the tangent function, Equation (5). We can use this
approximation when b is within ±.011 of tanha , as then it is always valid to four decimal places.
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Now we used an identity to reduce the domain of the tangent function to 0°≤ x≤ 45° . There
is no corresponding identity for the hyperbolic tangent function, so we need to cover the range
0 ≤ x ≤ 5.30 . We can use Equation (7) to add or subtract fractional values of tanh a and tanh b.
However, without memorizing a large number of such values, we cannot approximate tanh x to
within the linear region (±.053) over our entire range of x using at most one addition or subtraction.
Rather than evaluating Equation (7) multiple times, we introduce a transformation that simplifies the
addition process:

fa =
1+ tanh a
1− tanh a

(9)

tanh a =
fa−1
fa +1

(10)

The value f , called the velocity factor, is presented in a paper by Wilson4 for simplifying
relativistic addition of velocities that are fractions of the speed of light c, as the associated Lorentz
transformation is identical in form to Equation (6). It turns out that if we multiply fa and fb, the
resulting fab is the velocity factor for tanh(a+b) , as shown below:

fa× fb =
1+ tanh a
1− tanh a

× 1+ tanh b
1− tanh b

=
1+ tanh a · tanh b+ tanh a+ tanh b
1+ tanh a · tanh b− tanh a− tanh b

=
1+tanh a·tanh b+(tanh a+tanh b)

1+tanh a·tanh b
1+tanh a·tanh b−(tanh a+tanh b)

1+tanh a·tanh b

=
1+ tanh a+tanh b

1+tanh a·tanh b

1− tanh a+tanh b
1+tanh a·tanh b

=
1+ tanh(a+b)
1− tanh(a+b)

= fab

So it is possible to find, say, tanh(a + b + c) by finding fa , fb and fc using Equation (9),
multiplying them to get fabc, and then converting the result back to tanh(a+b+ c) using the inverse
Equation (10).

We can simplify this process in two ways. First, we can rewrite the transformation equations for
fractional values tanh a = N/D and fa = n/d :

fa =
D+N
D−N

(11)

tanh a =
n−d
n+d

(12)

The velocity factor for a negative tanh a turns out to be the reciprocal of that for a positive tanh a , so
when we are finding tanh(a−b) we use the reciprocal of the velocity factor for tanh b.

Second and most importantly, we don’t memorize tanh a fractional values and transform them to
velocity factors, but rather we directly memorize values of fa that are simple fractions. A convenient
set of values are presented in the table below:
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a fa

1.1513 10
.5493 3
.2554 5/3

.2027 3/2

.0244 21/20

Table 2. Angles with Simple Velocity Factors.

This table includes more memorized values than I would prefer. However, combinations of the
top four values of a can approximate a given value tanh x for 0 ≤ x ≤ 5.30 to roughly within the
±.053 linear range. (Actually, we really should add the useful round a = 1.7006 for fa = 30 that
occurs when the top two values of fa are multiplied and the top two values of a are correspondingly
added.) Values of fa that contain common factors were chosen so that cancellation can occur as they
are multiplied (when adding a) or divided (when subtracting a). Now we could choose a simple
fraction for the final remainder (as we did for the tangent function) and convert it to a velocity factor
to multiply as well. However, converting the fraction to a velocity factor would complicate it, so it is
preferable instead to include the last row of the table, which if needed can reduce the remainder to
within nearly the ±.011 range for which approximation (8) is valid to four decimal places.

The general procedure to find tanh x is to identify values of a in Table 2 that combine to
approximate x. The velocity factors for added a’s are multiplied and those for subtracted a’s are
divided. The resulting velocity factor is transformed by Equation (12) to form our first approximation.
The correction c of Equation (8) is then added to arrive at the final approximation.

As usual, the calculation is simpler in practice than it probably seems from the detailed derivation.
Let’s work through some examples.

Example: Find tanh .8121 .
We choose .5493 + .2554 = .8047, so

f = 3(5/3) = 5

tanh .8047 =
5−1
5+1

= 2/3 = .6667

Now the final remainder b is .0074, and

c = .0074(1− (2/3)2) = .0074(5/9) = .0041
tanh .8121 = .6667+ .0041 = .6708

compared to the actual value of .6707. . .

Example: Find tanh 2.0324 .
We choose 1.7006+ .5493− .2027 = 2.0472 , so

f = 30(3)(2/3) = 60

tanh 2.0472 =
60−1
60+1

= 59/61 = .9669

11



We approximated 59/61 by 59/60(1− 1/60) as described in the earlier section on
division. Actually, a less accurate but faster solution for this special case is
59/61 = (1− 1/60)/(1 + 1/60) ≈ (1− 1/60)2 ≈ 1− 1/30 = .9667 , where we kept the
only the first two terms a2−2ab of the binomial expansion of (a−b)2.

Now the final remainder b is −.0148 , and

c =−.0148(1− .972) =−.0148(1− .94) =−.0009
tanh 2.0324 = .9669− .0009 = .9660

compared to the actual value of .9662. . . . Notice that b actually lies outside the .011
range for four-digit accuracy of Equation (8). We could have included .0244 as we
do in the next example.

Example: Find tanh .7238 .
We choose .5493 + .2027 - .0244 = .7276 , so

f = 3(3/2)(20/21) = 30/7

tanh .7276 =
30−7
30+7

= 23/37 = .6216

To calculate the fraction 23/37 above, we can multiply the numerator and denominator
by 3 to obtain the easier division 69/111 , and in fact we can also multiply this
new value 69/111 by 9/9 to arrive at 621/999 , producing the repeating decimal .621
immediately. Now the final remainder b is −.0038 , and

c =−.0038(1− .62) =−.0038(.64) =−.0024
tanh .7238 = .6216− .0024 = .6192

The actual value is .6193 to four decimal places.

Is there an equivalent velocity factor for the tangent function? The tangent addition formula in
Equation (3) shows that the signs in the numerator and denominator are dissimilar, unlike that in
Equation (6) for the hyperbolic tangent function. We are clued to look at complex formulas since
tanh ix = i tan x , or tanh x =−i tan ix , and poking around we find for the tangent function,

ga =
1+ i tan a
1− i tan a

tan a = i
(

1−ga

1+ga

)
This works, but velocity factors provide no overall benefit for the tangent function due to the

complication of multiplying complex numbers and the fact that only one pair of a values are needed
at most in the tangent calculation.

We now have an algorithm for the hyperbolic tangent function that provides nearly four decimal
place accuracy over the entire range of the function, providing an intermediate approximation and a
correction for greater accuracy.
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Calculating the Exponential Function

eXponentials can also benefit from our work so far. Watch as we do some algebraic manipulations
on the tanh x definition given earlier :

tanh x =
ex− e−x

ex + e−x

=
e2x−1
e2x +1

= 1− 2
e2x +1

2
e2x +1

= 1− tanh x

2
1− tanh x

= e2x +1

e2x =
2

1− tanh x
−1

=
2− (1− tanh x)

1− tanh x

=
1+ tanh x
1− tanh x

or,

e2x = fx

where fx is the velocity factor once again!

This is quite surprising, and it means that we can approximate e2x by multiplying those velocity
factors fa from Table 2 whose values of a combine to approximate x . Furthermore, for a final
remainder of b , we can approximate eb to four digits in the same range guaranteed by the tanh a
table (0≤ b≤ .012) with

eb ≈ 1+1.01b (13)

Since we multiply our net velocity factor fnet by e2b for our final value, we effectively add the
following correction c to fnet :

c = 2(1.01)b fnet (14)

To find e2x , we first divide the exponent by 2 to find x. Then we adjust x by multiples of±1.1513
to lie within the range 0 ≤ x ≤ 1.1513 , which corresponds to the value fa = 10 in Table 2. From
that table we find fnet by multiplying fa values for combinations of a values that approximate x
(remember to use the reciprocal of fa when subtracting a). For the final remainder b we add the value
c from Equation (14). Then since e2(1.1513) = 10 , we multiply our last result by 10 for each multiple
we subtracted, or divide by 10 for each multiple we added, to arrive at e2x to roughly four-digit
accuracy.
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Because of its symmetry about the origin, the tangent of a negative number can simply be
calculated as the negative of the tangent of the absolute value of the number; this is true for the
hyperbolic tangent as well. However, the exponential function has no such symmetry, so e−x has to
be evaluated directly. We could add the multiples described above to bring x to a positive number
and adjust the final result. Or, we can start with the reciprocal of a velocity factor to provide an
initial negative value of a. This is demonstrated in the second and fourth examples below.

Example: Find e1.5246 .
We divide by 2 to find x = .7623 . We choose .5493+ .2027 = .7520 , so we have
remainder b = .0103 and

f = 3(3/2) = 9/2

c = 2(1.01)(.0103)(9/2) = 1.01(.0927) = .0927+ .0009 = .0936

e1.5246 = 9/2 + .0936 = 4.5936

compared to the actual value of 4.5933. . .

Example: Find e−.6850 .
We divide by 2 to find x =−.3425 . We choose −.5493+ .2027 =−.3466 , so we
have remainder b = .0041 and

f = (1/3)(3/2) = 1/2

c = 2(1.01)(.0041)(1/2) = .0041+ .0000 = .0041

e−.6850 = 1/2 + .0041 = .5041

which agrees with the actual value to four decimal places.

Example: Find e6.2037 .
We divide by 2 to find 3.1019 and subtract 2(1.1513) = 2.3026 to arrive at x = .7993 .
We choose .5493+ .2554 = .8047 , so we have remainder b =−.0054 and

f = 3(5/3) = 5
c = 2(1.01)(−.0054)(5) = 1.01(−.0540) =−(.0540+ .0005) =−.0545

e6.2037 = 102(5− .0545) = 494.55

compared to the actual value of 494.58 .

Example: Find e−6.36 .
We divide by 2 to find -3.18 and add 2(1.1513) = 2.3026 to arrive at x =−.8774 .
We choose −1.1513+ .2554+ .0244 =−.8715 , so we have remainder b =−.0059
and

f = (1/10)(5/3)(21/20) = 7/40

c = 2(1.01)(−.0059)(7/40) = 1.01(−.0826/40) =−.0834/40

e−6.36 = (7−.0834)/4000 = .001729

which is the actual value to this four-digit accuracy. This was hard! It is about the
most difficult problem of this type we can encounter.
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Now 10x = e2.3026x , so we are also able to solve 10x if we can manage the multiplication, which
can be simplified to 2.303 to our accuracy. Since the first thing we do is divide the exponent by 2,
though, we can eliminate that step and multiply the exponent by 1.1515 instead.

Calculating the Logarithmic Function

LOGarithms can be calculated by inverting our method for ex . The natural logarithm to base e,
denoted as ln x , is the most straightforward one to find by inversion. First we shift the decimal

point in x left or right so that 1 < x < 10 . Then we find velocity factors in Table 2 that multiply
or divide to a value x0 that approximates x , leaving a remainder b . Our first approximation is the
corresponding sums or differences of a values, multiplied by 2. Solving Equation (13) for b and
doing some algebra provides the correction c :

c =
b
x0

(1− .01) (15)

Finally, we add 2.3026 for every decimal place we shifted left in the original x , or subtract
2.3026 for every decimal place we shifted right.

Example: Find ln14.86 .
We could shift the decimal point one place to the left, but the original value is
very convenient for us, as it is nearly 10(3/2) = 15 . Therefore, we double 1.1513+
.2027 = 1.3540 to arrive at our first approximation, 2.7080 . Our remainder b =
−.14, so our correction is

c = −.14/15(1− .01) =−.0093(1− .01) =−.0093+ .0001 =−.0092
ln14.86 = 2.7080− .0092 = 2.6988

compared to the actual value of 2.6987 .
We could also have shifted the decimal point left to set x = 1.486 . We can use the
single velocity factor 3/2 to approximate this, providing an initial approximation to
the adjusted x of 2(.2027) = .4054 and a remainder b =−.014 . Then

c = −.014/(3/2)(1− .01) =−.0093(1− .01) =−.0092
ln14.86 = 2.3026+ .4054− .0092 = 2.6988

Example: Find ln348.62 .
We shift the decimal point left twice to set x = 3.4862 . This is about 10/3 = 3.3333 .
Therefore, we double 1.1513− .5493 = .6020 to arrive at our first approximation,
1.2040 . Our remainder b = .1529 , so our correction is

c = .1529/(10/3)(1− .01) = .0459(1− .01) = .0454
ln348.62 = 2(2.3026)+1.2040+ .0454 = 5.8546

compared to the actual value of 5.8540 .
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The common logarithm log x , or logarithm to base 10, can be converted to the natural logarithm
by multiplying by .4343 , which is equivalent to dividing by 2.3026 . In short, Table 2 and the
correction formulas provide a means for reasonably fast approximations to the exponential and
logarithmic functions to nearly four digit accuracy.

Conclusion

TECHNIQUES HAVE BEEN PRESENTED in this paper for approximating the tangent, hyperbolic
tangent, exponential and logarithmic functions to nearly four-digit accuracy. The addition

formulas for these functions consist of simple relationships between the same functions, so it is
possible here to add or subtract a set of known values to approximate an unknown value. This is not
possible, for example, for the sine and cosine functions, as sin(a+b) and cos(a+b) in their simplest
form mix sine and cosine terms. The memorization and arithmetic operations in the methods of this
paper are designed to minimize the effort involved; they include the two tables, the final corrections
c, and the algorithms themselves. These approximations are intended for quick pencil-and-paper
calculations or, with practice, fast mental solutions. They form a convenient set of quite accurate
calculational tools.
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